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1 Introduction

The purpose of this short communication is to present a straightforward ex-
tension of the work of Vinokur & Yee for 3D curvilinear moving grids in the
high order finite-difference frame work which include deforming grids that
satisfy the GCL (Geometric Conservation Law). The main ingredient that
was used in Vinokur & Yee is couched on the commutative property of mixed
difference operators for metric evaluations. This property can be applied to
mixed difference operators including time metric evaluations for deforming
grids. The natural and obvious candidates to satisfy the commutative prop-
erty are linear time and spatial difference operators. For separable difference
schemes using the method of lines (MOL) approach, all first-order linear
operators and high order linear multiple step methods (LMMs) temporal
discretizations satisfy the GCL. Examples of spatial operators are all orders
of central difference operators or any order of linear difference operators. For
in-separable Lax-Wendroff-type difference schemes (second-order or higher)
some analysis is needed to make sure the desired accuracy is maintain.
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author performed under the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under Contract DE-AC52-07TNA27344. This is contribution
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Recently, Abe et al. [1] made use of the commutative property presented
in Vinokur & Yee to construct their conservative metric evaluation that sat-
isfies the GCL identity. The first purpose of this note is to illustrate that
the Abe et al. [1] formulation can be simplified to just half of the needed
terms to satisfy the GCL identity. In addition, Abe et al. made use of the
linear difference operators that automatically satisfy the commutative prop-
erty for first order time discretization. For general multistage Runge-Kutta
(RK) methods that are higher than first order, the majority are not explic-
itly linear. Special construction of higher than first-order RK methods is
needed to insure the commutative property and maintain the desired order
of accuracy. In all of the Abe et al. examples they used a standard second-
order RK method without performing the systematic analysis to see if the
commutative property is satisfied. In addition it is uncertain whether or
not this RK method maintains second-order accuracy on their time metric
evaluation. The second purpose of this note is to show that some of the
typical explicit and implicit LMMs popularized by Beam & Warming [2] do
satisfy the commutative property. A construction of two-stage RK methods
with the commutative property and first-order and second-order accuracy is
included. The following expands the discussion further.

We consider a finite difference approximation of partial differential equa-
tions, where a curvilinear grid discretizes the computational domain. The
grid is generated by a coordinate mapping from a reference cube (£,7,() €
[0,1]* with time 7 to the physical domain (z,y,z) € Q with time ¢, and is
given by an invertible mapping

x=x(£,1,¢,7) (1)
y=y(n,¢7) (2)
z=2(&n,(,7) (3)
t=r. (4)

The mapping transforms the conservation law
ur + f(u)a + g(w)y + h(u). =0

on ) into

(Ju)r + (J&f + JEg + JEh + J&u)e+
(Inaf + Inyg + In:h + Inau)y + (JCG f + JGug + JCGh+ JGu)e =0 (5)



on the domain [0,1]>. Partial derivatives are denoted by subscript nota-
tion. For example, &, denotes the partial derivative 9¢/0x. The Jacobian
of the mapping, J, is the determinant of the matrix of partial derivatives
O(z,y,2)/0(&,m, (). The derivation of the conservative form (5) makes use
of the so called geometric conservation laws

(J&)e + (Jne)y + (JCa)c = 0 (6)
(J&y)e + (Jny)y + (JGy)e =0 (7)
(JE)e + (Inz)n + (JG)e =0 (8)
Jr 4+ (J&)e + (Im)y + (JG)e = 0. 9)

Here, the term ’conservation law’ is somewhat misleading, since (6)—(9) are
really identities that are satisfied by any given differentiable functions (1)-
(3). It is straightforward to see that (6)—(9) guarantee that any constant u
is a solution of (5). We will show how to discretize (5) in such a way that
(6)—(9) are satisfied exactly by the discretization. When (6)—(9) are satisfied
exactly, regions of constant u, such as a free stream state, will be preserved
exactly. In general, a finite difference discretization only guarantees that
a free stream state is constant up to the order of truncation error of the
discretization. There are many examples where an approximation that has
the exact free stream preserving property is advantageous.

Discretizations that satisfy the identities (6)—(8) were developed by [6] in
non-symmetric form. Vinokur and Yee showed in [8] how a coordinate invari-
ant, or symmetric, form can be devised. The work of Visbal and Gaitonde [9]
and Ou and Jameson [4] is not symmetric and they do not make used of the
commutative property on their metric construction. Recently, Abe et al. [1]
developed a discretization that satisfies (9). Making use of the Vinokur and
Yee symmetric formulation for moving grids in the high order finite-difference
frame work, it will be shown that we can straightforwardly extend the idea
of Vinokur and Yee to include deforming grid time metrics that satisfy the
GCL identity. From our formulation we will show how the construction by
Abe et al. can be considerably simplified with just half of their indicated
terms. In addition, we will extend the results to multi-stage Runge-Kutta
time discretizations.



2 Geometric conservation laws

We introduce the vector notation

€a Nz Ca
S — g gy s — g n, S — g Cy (10)
£ 1z G
In this notation, (6)—(8) become
(SO)e + (8™), + (S¥)c = 0. (11)

The vector S can be evaluated in terms of the derivatives re = (¢ ye 2¢),
because of the relations

S(é) — rn X re S(n) =T¢ X re S(O =TI X I‘n. (12)

For a derivation of these formulas, see [7]. The coordinate invariant form
by Vinokur and Yee is obtained by rewriting (12) as the mathematically
equivalent

S = 2 ((rx x)y — (1 x 7)) (13)
S0 = (e x x)c — (r X x0)g) (14
SO = 2 ((rxry)e — (r x v, (15)

before approximating. Let the derivatives with respect to (£ 7 ¢) in (13)—(15)
be approximated by difference operators D, D and D© respectively.
For example, the approximation of (13) is

1
S(©) — 5 (D(x x DOr) = D (x x D). (16)

The approximations of (14) and (15) are similar. We use the subscript h to
denote a quantity that has been discretized on a grid. It is then straightfor-
ward that if the operators along the different coordinate directions commute,
e.g., DODM = DM PDE  then the finite difference approximation satisfies
the discretized (11),

DOS® 4 pwg 4 S — g (17)
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exactly. The commutative property holds for standard centered difference
operators; see e.g., [8] for a proof. Note that here the difference operators
used in (16) and (17) are assumed to be the same. However, a sufficient
condition to satisfy (17) is that only the ’outer’ difference operators in (16)
are the same as used in (17). The 'inner’ operators in (16) could be replaced
by some other operators D©, D™ and D), so that the metric discretization
(16) instead becomes

S = % <D(’7)(r x DOr) — DO (r x 5(”)1')) . (18)
This possibility is discussed by Deng et al. in [3], who conclude that the ac-
curacy is better when the same difference operators are used everywhere. We
remark here that for spatial discretizations, it is a standard procedure to use
the same difference metric operator for all spatial directions, even if different
spatial discretizations in each of the inviscid flux derivative spatial direc-
tions might be employed. Here, we only consider separable finite difference
schemes of the MOL type. Temporal finite difference operator construction
is different from the spatial discretizations. Often, different orders and dif-
ferent types of finite difference temporal discretizations are employed from
the spatial difference operators. This MOL discretizations are employed in
our high order metric constructions as well.

Next, we show a natural generalization of the above to obtain a metric
discretization that satisfies (9) exactly. In vector notation it holds that,

J=r¢-(r, x rC)?

and
J& = —rr - (1, % x0) (19
Jip = =1y - (re X re) (20)
JG = -1, (re X 1) (21)

The terms in the identity (9) can be rewritten in a way similar to (13)—(15)
by noting that

((r- (ry xr¢))e + (r- (r¢ X 16)) + (v (Tg X 1)) -
(22)

Wl

J=re- (r; xre) =



Applying (22) to each of (19)—(21) with obvious modifications gives

T = =5 (0 0y < 1)s + (0 (e X 1))y + (0 (oo X)) (28
T = =5 (0 (re X )+ (- re X v))e + (0 (0 X x0)) (24
JGo= =g (0 (e X wy))e o+ (0 0y X E et (0 (00 X 1)) (29

Let the discretization of J, J&;, Jn:, and J(; be done by replacing all deriva-
tives with respect to (£ n ¢ 7) in (22) and (23)-(25) by commuting finite dif-
ference operators, D®, D D@ and D™ eg., (23) would be discretized
by

(th)h - —% (D(T)(I‘ . (D(n)r X D(C)I‘))—l—

D (r - (DYWr x DYr)) + DY (r - (DYr x D"r))).
(26)

It is then straightforward to verify that this discretization satisfies the fol-
lowing discrete version of (9),

DD Jy, + DO(JEN, + D (Jny)n + DO(JEG), = 0. (27)

The metric discretization given in [1] also satisfies (27). However, in
[1], equation (22) is further decomposed by applying (13)—(15) to the vector
products. This leads to the Jacobian being rewritten as

((r-(ry xre))e + (v (r¢ X 1¢)) + (T (T X 1)) ) =

(0 G )y = (X m) e+ (- G0 x v = (X vy

Wl

J=r¢ (v, xX1e) =

Wl

(- Gl x me = x Ty ) @9

before discretizing.Formulas (23)-(25) are rewritten in a similar way. Hence,
this discretization requires double the number of terms.



3 Time integration

More moving deformable grids, it is important to distinguish between the two
cases: (a) Grid mapping is a known, given, function of time, and (b) The
grid depends on the computed solution, and therefore needs to be solved for
in time together with the solution of the PDE. Here our discussion focuses
on (a). We are not sure if any of the theory could be used for (b) as well.

The forward time difference
DOy = ("t — u™) /At (29)

is a linear difference operator, and hence it can be used in time to define a
discretization that satisfies (27), as outlined in the previous section. Here,
superscript n denotes time level. We assume that time has been discretized
with a uniform time step At, so that the time levels are t, = nAt, n =
0,1,.... Similarly, time discretizations that can be written of the form

Dyn = f(y*at*)>

for some y*, t,, when applied to the ODE y;, = f(y,t), allow straightforward
inclusion of the moving grid terms. The operator D is any finite difference
operator approximating the time derivative. Examples of methods of this
form are the backward Euler, leap-frog, and backward differentiation (BDF)
methods. Furthermore, it is possible to include the moving grid terms in
general LMMs to obtain the exact conservation (27) in the sense that the
local truncation error is exactly zero for constant u. For higher order methods
it is important to verify that the order of accuracy is not degraded by adding
the moving grid terms.

For higher order of accuracy Runge-Kutta (RK) methods are standard
choices. RK methods are not explicitly linear difference operators, but by
making use of (27) it is possible to choose the metric at the different RK
stages to perfectly preserve a free stream state on a moving and deforming
grid. For simplicity we assume that f(u) = g(u) = h(u) = 0, so that (5)
becomes

(Ju)r + (J&u)e + (Jneu)y + (JGu)e = 0. (30)

Denote

su(r(72), r(m1),u) = DO((J&)u) + D ((Jn)nu) + DO((JG)nu),



where the time differences of the metric are approximated by differences
between r(7y) and r(71), and where grid terms not differentiated in time are
evaluated at 7;. For example,

(r(72) - (Dr(1y) x D©Or(ry))—
r(r1) - (D™r(r) x DOr(r))+
D (x(m) - (DWr(m) x (x(12) — x(m))))+
DO(x(n) - ((x(r2) — v(m)) x D™r(m)))) . (31)
The grid r(7) can be evaluated at any 7, because it is assumed to be a given
function. Note the simplified notation r(7) = r(7,&,n,(), suppressing the

spatial arguments of the grid mapping. When u is a constant, it follows from
(27) that

(J&)n = —3A7

Atsp(r(7), (1), u) = (—=Ju(7) + Jn(11))u, (32)
where the Jacobian can be evaluated at any 7, since it is a function of the

grid. The spatial derivatives in (31) are evaluated at 7. Exchanging 71 and
Ty gives an approximation with the spatial part centered at 7 that satisfies

—Atsp(r(m),r(1),u) = (—=Jn(1) + Ju(n))u. (33)
The two-stage RK method on conservation form
Jn(Tag)uY = Ty (r)u™ — Atsp(r(Tne), r(70), u™) (34)

(204 (Tns1) — Jn(mo))u'® = Ji(Tps)u™ + Atsp(r(70), r(Tnsr),ut)  (35)
1
Jh(TnH)UHH -3 (Jh(Tn)Un + (21 (Tnt1) — Jh(Tn))U@)) (36)
is second order accurate and preserves constants perfectly. When the metric
is stationary, (34)—(36) is the standard second order TVD RK method [5].
To see that constants are left unchanged, assume that u" is given and
constant. Equation (32) applied to the first stage gives that u(!) = u™.
Similarly, we obtain for the second stage u® =« and hence u® = u", so
that by (36) u"™! = u". Second order accuracy is shown in Appendix A.

Note that there are many different ways that the moving metric could be
discretized in a RK method. For example, the method

Jh(TnJrl)u(l) = Jp(Ta)u" — Atsp(r(741),1(70), u™) (37)
Jh(Tn+2)u(2) = Jh(Tn+1)“(1) — Atsp(r(Tni2), T(Tn+1)au(1)) (38)
(Jn(Tara) + Jn () )u™ ' = Tn(m)u™ + Ju(Tnsz)u® (39)



is another generalization of the standard second order TVD RK method that
preserves constants, but (37)—(39) is only first order accurate.

In summary, a systematic formulation of conservative symmetric finite-
difference metric discretizations that satisfy the GCL identity exactly in mov-
ing deformable grids is presented. A wide class of temporal metric discretiza-
tions that satisfy the GCL identity is discussed. In general, higher than
first-order RK methods are not explicitly linear difference operators. Con-
struction of two multistage RK method that satisfy the GCL is included.
Extensive numerical experiments on practical test cases are planned.

A Second order of accuracy

To demonstrate the accuracy of (34)—(36), consider the scheme applied to the
equation (Ju); + D(au) = 0, where J = J(x,t) and a = a(x,t) are known
functions, and v = wu(x,t) is the unknown. D is an unspecified difference
operator acting only in the z-direction. The truncation error of (34)—(36),
denoted 7, is obtained by inserting the exact solution, u, into the RK method,

1
7= Jpty Tt — é(J}fu” + J ™ — D((a™ — a™)uM)) =
1
J g — §(J,§‘u” + Jpu™ — D((a" — a™)u")—
CLn-H —a” n, n n+1 ny, n
D( (Jyu" = D((a™" —a")u")))) (40)

n+1
Jh

and performing a Taylor expansion in the time variable around ¢,,. The spa-
tial accuracy is assumed to be order two or higher. The part of the truncation
error from the operator D will not be considered below. To simplify the no-
tation, denote J = J;', w = u", and a = a". The time step is denoted by h.

9



Taylor expansion up to second order gives

h2 2 1 2
7= (J 4 1y - Ju) (A b+ ) = Ju — 5 (D((hay + Z-a)u)—
h2 1 Jt 3
h h? h? ,

where

2

1 h 1 J,
T=3D ((hat + ) (u — h= D{agu) hjtu)) —

1 1 h?
—D ( ha;u — h*a;~D(au) — hQatﬁu + —agu | +O(h?). (42)
2 J J 2
Substitute D(a;u) = —(Ju); in the second term to obtain
2

1 1 J, h
T = §_D (hatu + h2atj(Ju)t - h2at7tu + ?attu) + O(hg) =

1 h?
§D (hatu + h?azu; + Eattu) +O(h%) (43)

The final result becomes

h h? 2 h h?
T = h(Ju)t + §D(atu) + i(Ju)tt + ZD(CLttu) + §D(CLtU) + §D(atut)+
h2
ZD(attu) + O(h%)  (44)

Collecting terms and making use of the equation and its derivative, (Ju)y +
D((au);) = 0, yield the final result

7= O(h%)

and, hence, the order of accuracy is two.
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